15 research outputs found

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic

    Improvement of finite element spot weld models for structural dynamics

    No full text
    The ACM 2 spot weld model is the currently most widely used spot weld model in industry. It is designed to be tuned using parameters to represent the stiffness characteristics of a spot weld in a suitable way. The choice of these parameters is however often associated with uncertainties. Therefore, the set of parameters with best performance is determined by employing an updating algorithm. Further, the result is compared to a new category of models, the so called Spider models, which intend to overcome mesh dependence in the spot weld area by re-meshing the structures locally. The results are formulated as guidelines for the optimum implementation of these spot weld models for structural dynamics. The studies are performed using two cut-out parts from a Volvo FH truck cabin. In addition, a new analytical approach for updating material data of isotropic shell structures is derived and the equations are verified using the same test pieces

    Direct numerical simulation of flow over periodic hills up to ReH = 10,595

    No full text

    Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flow

    No full text
    We present a novel approach to wall modeling for RANS within the discontinuous Galerkin method. Wall functions are not used to prescribe boundary conditions as usual but they are built into the function space of the numerical method as a local enrichment, in addition to the standard polynomial component. The Galerkin method then automatically finds the optimal solution among all shape functions available. This idea is fully consistent and gives the wall model vast flexibility in separated boundary layers or high adverse pressure gradients. The wall model is implemented in a high-order discontinuous Galerkin solver for incompressible flow complemented by the Spalart-Allmaras closure model. As benchmark examples we present turbulent channel flow starting from Reτ=180Re_{\tau}=180 and up to Reτ=100,000Re_{\tau}=100{,}000 as well as flow past periodic hills at Reynolds numbers based on the hill height of ReH=10,595Re_H=10{,}595 and ReH=19,000Re_{H}=19{,}000
    corecore